

A⁺⁺" Accredited by NAAC(2021) With CGPA 3 52

SHIVAJI UNIVERSITY, KOLHAPUR - 416004, MAHARASHTRA

PHONE:EPABX-2609000, www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर - ४१६००४,महाराष्ट्र

दूरध्वनी - ईपीएबीएक्स - २६०९०००, अभ्यासमंडळे विभाग दुरध्वनी विभाग ०२३१–२६०९०९४

जा.क्र.शिवाजी वि. / अमं / 732

दिनांक. 09/10/ 2023

प्रति,

मा. अध्यक्ष व सदस्य, सर्व अभ्यास⁄अस्थायी मंडळे (सायन्स) शिवाजी विद्यापीठ, कोल्हापूर

विषय :- शैक्षणिक वर्षे 2023-24 पासून एम.एस्सी. अभ्यासक्रमाच्या आराखडया (Structure) बाबत.

महोदय / महोदया,

उपरोक्त विषयास अनुसरून आदेशान्वये कळविण्यात येते की, राष्ट्रीय शैक्षणिक धोरण, 2020 ची राज्यातील अंमलबजावणीच्या अनुषंगाने विद्यापीठ अधिकार मंडळाच्या निर्णयानुसार शैक्षणिक वर्षे 2023–24 पासुन एम.एस्सी. अभ्यासक्रमासाठी सोबत जोडलेला कॉमन आराखडा (Structure) व Formatting (Templet) लागू करण्यात आले आहे याची नोंद घ्यावी.

सदरची बाब सर्व शिक्षक, विद्यार्थी व संबंधीतांच्या निदर्शनास आणावी.

कळावे,

विश्वा आपला कुबल) उपकुलेसचिव

प्रतः–

प्र.अधिष्ठाता विज्ञान व तंत्रज्ञान विद्याशाखा मा.संचालक परीक्षा व मुल्यमापन मंडळ परीक्षक नियुक्ती विभाग—1,2 सर्व परीक्षा विभाग (ऑन) माहितीसाठी व पुढील योग्य त्या कार्यवाहीसाठी.

SHIVAJI UNIVERSITY, KOLHAPUR - 416 004, MAHARASHTRA

www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापुर - ४१६ ००४, महाराष्ट्र

दरध्वनी - ईपीएबीएक्स - २६०९०००, अभ्यासमंडळे विभाग दरध्वनी ०२३१–२६०९०९३/९४

SU/BOS/Science/499

Date: 10/07/2023

1	
The Principal,	The Head/Co-ordinator/Director
All Concerned Affiliated Colleges/Instituti	ons All Concerned Department (Science)
Shivaji University, Kolhapur	Shivaji University, Kolhapur.

Subject: Regarding syllabi of M.Sc. Part-I (Sem. I & II) as per NEP-2020 degree programme under the Faculty of Science and Technology.

Sir/Madam,

Estd. 1962

"A++" Accredited by NAAC(2021) With CGPA 3.52

To.

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-I (Sem. I & II) as per NEP-2020 degree programme under the Faculty of Science and Technology.

	M.ScPart I (Sem. I & II) as per NEP-2020							
1.	Microbiology (HM)	10.	Data Science					
2.	Pharmaceutical Microbiology (HM)	11.	Computer Science					
3.	General Microbiology	12.	Information Technology (Entire)					
4.	Electronics	13.	Food Science & Technology					
5.	Embedded Technology	14	Food Science & Nutrition					
6.	Geology	15.	Biochemistry					
7.	Sugar Technology (Entire)	16.	Biotechnology					
8.	Alcohol Technology (Entire)	17.	Medical Information Management					
9.	Agro Chemical & Pest Management (AGPM)	18.	Environmental Science					
		19.	Physics					

This syllabus, nature of question and equivalence shall be implemented from the academic year 2023-2024 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website www.unishivaji.ac.in)

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2023 & March/April 2024. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Dy Registrar Dr. S. M. Kubal

Copy to:

1	The Dean, Faculty of Science & Technology	8	P.G. Admission/Seminar Section
2	Director, Board of Examinations and Evaluation	9	Computer Centre/ Eligibility Section
3	The Chairman, Respective Board of Studies	10	Affiliation Section (U.G.) (P.G.)
4	B.Sc. Exam/ Appointment Section	11	Centre for Distance Education

²⁰ SHIVAJI UNIVERSITY, KOLHAPUR

Established: 1962

 \mathbf{A}^{**} Accredited by NAAC (2021) with CGPA 3.52

Structure and Syllabus in Accordance with

National Education Policy - 2020

with Multiple Entry and Multiple Exit

Master of Science Biotechnology (H.M.)

under Faculty of Science and Technology

(To Be Implemented from Academic Year 2023-24)

INDEX

Sr. No.	Contents	Page No
1	Preamble	03
2	Duration	03
3	Eligibility for Admission	03
4	Medium of Instruction	03
5	Programme Structure	04
6	Programme Outcomes (POs)	09
7	Course Codes	09
8	Syllabus	10
9	Scheme of Teaching	24
10	Examination Pattern	24
11	Nature of Question Paper and Scheme of Marking	25
12	Equivalence of Courses	27

1. Preamble:

The two years M. Sc. in Biotechnology (HM) (NEP) subject under Horizontal Mobility (H.M.) program is formulated for developing competent biotechnologists/biochemists/ microbiologists for which significant job opportunities exist in this country and abroad. The course is based on interdisciplinary nature of Bio Chemistry, Quantitative Biology, Genetics, Biotechnology, microbiology and Biophysics. The program obliges students to read original publications and envisages significant inputs in laboratory work, communication skill, creativity, planning, execution and critical evaluation of the studies undertaken. This program gives common basic knowledge (Biochemistry, Biomolecules, Proteins including Enzymology, Molecular Biology, Tools and Techniques, Basics in Research Methodology which includes Biostatistics and Computers and Advances in Drug and Clinical Research) at first year level to become good biotechnologists/biochemists/Microbiologists. The specializations introduced in the course at second year level are in the disciplines of Immunology, Genetic Engineering, Fermentation Technology, Bioinformatics, Advances in Plant and Animal Biotechnology.

2. Duration:

Two-Year full-time course with Four semesters.

3. Eligibility for Admission:

i) A candidate possessing B. Sc. Degree with chemistry/ biochemistry/ biotechnology/microbiology/pharmamicrobiology/bioinformatics/forensicscience/botany/zoolog y/Nanotechnology/ food science and technology/B.Sc.Agri /B.E/M.B.B.S./B.Pharm/life sciences as principal subject.

ii) Student have to qualify the entrance examination conducted by Shivaji University for the respective academic year.

4. Medium of Instruction:

English

5. Program Structure:

Structure in Accordance with National Education Policy - 2020 With Multiple Entry and Multiple Exit Options M.Sc. Biotechnology (H.M.) Part – I (Level-6.0)

	Course Code	Tea	aching Scher	ne			Examination	cheme		
		Theo	ory and Pract	ical	Unive	University Assessment (UA)			l Assessment	(IA)
		Lectures (Hours / week)	Practical (Hours / week)	Credit	Maximum Marks	Minimum Marks	Exam. Hours	Maximum Marks	Minimum Marks	Exam. Hours
					Semester-I		1		I	ı
Major	BT 101	4		4	80	32	3	20	8	0.5
Mandatory Theory	BT 102	4		4	80	32	3	20	8	0.5
Major Elective Theory	E-BT 103A OR E-BT 103B OR E-BT 103C	4		4	80	32	3	20	8	0.5
Major	P-BT 104		8	4	100	40	12			
Mandatory Practical	P-BT 105		4	2	50	20	6			
Research Methodology	RM-BT 106	4		4	80	32	3	20	8	0.5
То	tal			22	470			80		
			1		Semester-II		1	1	1	1
Major	BT 201	4		4	80	32	3	20	8	0.5
Mandatory Theory	BT 202	4		4	80	32	3	20	8	0.5
Major Elective Theory	E-BT 203	4		4	80	32	3	20	8	0.5
Major	P-BT 204		8	4	100	40	12			
Mandatory Practical	P-BT 205		4	2	50	20	6			
OJT/FP	OJT-BT 206 OR FP-BT 206			4				100	40	*
	Total			22	390			160		
Total (Sem	Total (Sem I + Sem II) 44 860 240									

• BT – Major Mandatory Theory	• Total Marks for M.ScI: 1100
P-BT – Major Mandatory Practical	• Total Credits for M.ScI (Semester I & II): 44
• E-BT – Major Elective Theory	• Separate passing is mandatory for University and Internal Examinations
• RM - BT - Research Methodology	
OJT- BT /FP- BT - On Job Training/ Field Project	
*Evaluation scheme for OJT/FP shall be decided by concerned BOS	
Requirement for Entry at Level 6.0:	
B. Sc in chemistry/ biochemistry/biotechnology/microbiology/phan	rmamicrobiology/bioinformatics/forensic science/botany/zoology/
/Nanotechnology/food science and technology/B.Sc. Agri /B.E/M.B.B.S	./B.Pharm/life sciences as principle subject and appeared for entrance
examination. (as per eligibility)	
Requirement for Exit after Level 6.0:	
Students can exit after completion of Level 6.0 (44 Credits) with Po	st Graduate Diploma in Biotechnology
Requirement for Entry at Level 6.5:	
Completion of Level 6.0	

Structure in Accordance with National Education Policy - 2020 With Multiple Entry and Multiple Exit Options M.Sc. Biotechnology (H.M.) Part – II (Level-6.5)

	Course Code	Tea	ching Schen	ne	Examination S			Scheme		
		Theor	ry and Pract	ical	Univer	rsity Assessme	ent (UA)	Internal Assessment (IA)		(IA)
		Lectures Hours	Practical Hours	Credit	Maximum Marks	Minimum Marks	Exam. Hours	Maximum Marks	Minimum Marks	Exam. Hours
		(rel	(rei							
		week)	WCCK)		Semester-III					
Maior	BT 301	4		4	80	32	3	20	8	0.5
Mandatory	BT 302	4		4	80	32	3	20	8	0.5
Theory	BT 303	4		4	80	32	3	20	8	0.5
Major	E-BT 304							-		
Elective		4		4	80	32	3	20	8	0.5
Theory										
Major	P-BT 305									
Mandatory			4	2	50	20	6			
Practical										
Research	RP-BT 306		8	4	100	40	12#			
Project			Ű	•	100	10	12			
Tot	al			22	470			80		
					Semester-IV			• •		
Major	BT 401	4		4	80	32	3	20	8	0.5
Mandatory	BT 402	4		4	80	32	3	20	8	0.5
Theory	BT 403	4		4	80	32	3	20	8	0.5
Major	E-BT 404			4	00	22	2	20	0	0.5
Elective		4		4	80	32	3	20	8	0.5
Theory	DD DT 405									
Research Project	RP-B1 405		12	6	150	60	18##			
	Total			22	470			80		
Total (Sem	III + Sem IV)			44	940			160		

• BT – Major Mandatory Theory	• Total Marks for M.ScII: 1100				
• P-BT – Major Mandatory Practical	• Total Credits for M.ScII (Semester III & IV): 44				
• E-BT – Major Elective Theory	• Separate passing is mandatory for University and Internal Examinations				
• RP-BT- Research Project					
# Evaluation Scheme for Research Project shall be decided by concerned BOS					
## Evaluation Scheme for Research Project shall be decided by concerned	BOS				
Requirement for Exit after Level 6.5:					
Students can exit after completion of Level 6.5 with Post Graduate in Biotechnology					

Course Code Details: NEP – Biotechnology (H.M.) (NEP – 2023)

	Semester I	Semester II		
BT 101	Proteins: Structure and Functions (4 Cr)	BT 201	Enzymology (4 Cr)	
BT 102	Biomolecules (4 Cr)	BT 202	Molecular Biology (4 Cr)	
E-BT 103A	Cell Biochemistry & Nucleic Acids (4 Cr)			
E-BT 103B	Taxonomy and Molecular Systematics (4 Cr) OR	E-BT 203	Tools and Techniques in Biological Sciences (4 Cr)	
E-BT 103C	Advances in Drug and Clinical Research (4 Cr)			
P-BT 104	Laboratory Course - I (4 Cr)	P-BT 204	Laboratory Course - III (4 Cr)	
P-BT 105	Laboratory Course - II (2 Cr)	P-BT 205	Laboratory Course - IV (2 Cr)	
RM-BT 106	Research Methodology (4 Cr)	OJT-BT 206 OR FP-BT 206	On Job Training (4 Cr) OR Field Project (4 Cr)	
	Semester III	Semester IV		
BT 301	Genetic Engineering (4 Cr)	BT 401	Bioinformatics (4 Cr)	
BT 302	Immunology (4 Cr)	BT 402	Advanced techniques in Biotechnology (4 Cr)	
BT 303	Advance in Plant and Animal Biotechnology (4 Cr)	BT 403	Forensic Biotechnology (4 Cr)	
E-BT 304	Fermentation Technology (4 Cr)	E-BT 404	Nanobiotechnology (4 Cr)	
P-BT 305	Laboratory Course - V (2 Cr)	RP-BT /05	Research Project (6 Cr)	
RP-BT 306	Research Project (4 Cr)	NI -DI -+05		

6. Programme Outcomes (POs):

- Future ready Post Graduate in Biotechnology subject
- Well conversant with basic information needed for Biotechnology industries
- Aptitude for knowledge creation by opting for research
- Well equipped with the information needed for scientific competitive examinations
- Aptitude for knowledge transfer to next generation by opting for teaching profession

7. Course Codes:

M.Sc. Semester – I	
Major Mandatory	
BT 101 Proteins: Structure and Functions (4 Credit)	MSU0325MML97G1
BT 102 Biomolecules (4 Credit)	MSU0325MML97G2
P-BT 104 Practical Course - I (4 Credit)	MSU0325MMP97G1
P-BT 105 Practical Course - II (2 Credit)	MSU0325MMP97G2
PM-BT 106 Research Methodology (4 Credit)	MSU0325RML97G
Major Elective	
E-BT 103A Cell Biochemistry and	
Nucleic Acids (4 Credit)	MSU0325MEL97G1
OR	
E-BT 103B Taxonomy and Molecular	MSU0225MEL 07C2
Systematics (4 Credit)	MISU0525MIEL97G2
E-BT 103C Advances in Drug and Clinical Research (4 Credit)	MSU0325MEL97G3
M.Sc. Semester – II	
Major Mandatory	
BT 201 Enzymology (4 Credit)	MSU0325MML97H1
BT 202 Molecular Biology (4 Credit)	MSU0325MML97H2
P-BT 204 Practical Course - III (4 Credit)	MSU0325MMP97H1
P-BT 205 Practical Course - IV (2 Credit)	MSU0325MMP97H2
FP-BT 206 Field Project (4 Credit)	MSU0325FPP97H
OR	
OJT-BT 206 On Job Training (4 Credit)	MSU0325OJP97H
Major Elective	
E-BT 203 Tools and Techniques in Biological Sciences	MSU0325MEL97H1
(4 Credits)	

8. Syllabus:

SEMESTER - I

BT 101	Proteins: Structure and Functions (4 Cr)	60 Hrs
Credit I	 Amino Acids Chemical structure and general properties, pI of amino acids, acid base concepts. General metabolism scheme of amino acids and Urea cycle. Proteins Classification- size, shape, degree of association, complexity. Classification of proteins according to biological functions (Enzymes, transport, storage, contractile, structural, defense and regulatory). Structure of peptide bond - restricted rotation, cis - trans bending, Ramachandran plot. 	15 Hrs
Credit II	Types of protein structures; Primary, Secondary structures - alpha helix and beta pleated structure, triple helix (collagen), Tertiary and Quaternary structures, forces stabilizing tertiary and quaternary structures, prediction of secondary and tertiary structures. Unfolding / refolding experiment. Dynamics of protein folding, role of molecular chaperones in protein folding, lysosomal and membrane proteins. Structure function relationship - myoglobin and hemoglobin, potassium ion channel Multidrug resistance, ABC transporters, Antimicrobial peptides, AMP.	15 Hrs
Credit III	Techniques for studying primary sequence of proteins, end group analysis, finger printing and sequenators. Chemical synthesis of peptides/ solid phase automated synthesis, prediction of conformation from amino acid sequence, zymogens and their conversion into active proteins Protein evolution - convergent and divergent trees, Protein turnover: Ubiquitination, proteasome and protein degradation	15 Hrs
Credit IV	Concept of apoenzyme, holoenzyme, co-enzyme, prosthetic group. Vitamins as coenzymes: sources, requirements, functions and deficiency symptoms of water soluble vitamins, structure and biochemical role. Cofactors: Role of trace elements, their bound forms in biological systems and in enzyme structure and function. Applications of peptides and proteins in human therapeutics.	15 Hrs

- 1. Lehninger's Principles of Biochemistry by D. L. Nelson and M. M. Cox, CBS Publications, 2000
- 2. Biochemistry by Lubert Stryer, 4th Edition
- 3. Biochemistry by David Rawn
- 4. Principles of protein structure by Shulz and Schirmer
- 5. Fundamentals of Enzymology by Royer
- 6. Fundamentals of enzymology by Price and Steavens

BT 102	Biomolecules (4 Cr)	60 Hrs
Credit I	Carbohydrates Glycobiology. Introduction, Sources and Classification of carbohydrates, Stereoisomersm in monosaccharides, Reactions of glucose and fructose, Reducing sugar, Mutarotation, Osazone formation, Cyclic structure of glucose and fructose, Glycosidic bonds, Disaccharides, Polysaccharides: Glycogen, Starch Cellulose. Inulin, Fructan, Beet sugar, Guar gum. Carbohydrates as informational Molecules- The Sugar Code. Digestion and absorption of carbohydrates. Complex carbohydrates: Chitin, Pectin Xylan Agarose Dextran Peptidoglycan Blood group antigens, Lectins carbohydrate binding proteins. Selectins. Glycosaminoglycan, Glycoconjugates: Proteoglycans, Glycoproteins, Enzymes responsible for oligosaccharide assembly, Glycoproteins, Oligosaccharide linkages in glycoproteins, Protein glycosylation, Glycolipids, Lipopolysaccharides, Methods of carbohydrate analysis. Scarification, Dietary Fibers. RDA and AMDR for carbohydrates.	15 Hrs
Credit II	Essentials of bioenergetics, Glycolysis, Feeder pathways for glycolysis, Fates of pyruvate under anaerobic conditions: Fermentation, Gluconeogenesis, Citric acid cycle, Glyoxylate cycle, Pentose phosphate pathway of glucose oxidation, Entner–Doudoroff pathway, Glucuronate pathway, Cori cycle. Principles of metabolic regulation, Illustrated with the metabolism of glucose and glycogen. The Metabolism of glycogen in animals, coordinated regulation of glycolysis and gluconeogenesis, Coordinated regulation of glycogen synthesis and breakdown, Analysis of metabolic control. Inborn errors of carbohydrate metabolism, Carbohydrate metabolism.	15 Hrs
Credit III	Lipids Different Biological forms, Sources, Introduction, Definition, Functions, Classification and Role of lipids in the body. Neurvous system lipids, Cerebrosides and gangliosides Vitamin absorption and Hormone production. Storage lipids, Fatty acids, Triacylglycerols, Phospho lipids Waxes, Steroids, Structural lipids in membranes Lipids as signals, Prostaglandins, Clinical significance of lipids, Characterization of lipids. LDL, HDL, VLDL and chylomicrons. Risk associated with high lipids. Atherosclerosis. Lipid Panel Test.	15 Hrs
Credit IV	Salivary and stomach digestion, mobilization, and transport of fats, Beta oxidation of fatty acids pathway and regulation, Role of acyl carnitine in fatty acyl transport. Synthesis of fatty acid - fatty acid synthetase complex, pathway and regulation. Synthesis of triacyl glycerides. Ketone bodies. Lipid metabolism disorders. Antiphospholipid syndrome (APS). Lupus etc. Millet and their	15 Hrs

importance in Diet. Occurrence of millet in different parts of India and	
their properties.	

- 1. Lehninger's Principles of Biochemistry by D. L. Nelson and M. M. Cox, CBS Publications, 2000
- 2. Biochemistry by Lubert Stryer,
- 3. Biochemistry by Zubay
- 4. Biochemistry by Garrett and Grisham
- Complex Carbohydrate by Nathan Sharon Millets Properties, Processing, and Health Benefits by Anil Kumar Siroha, Sneh Punia, Sukhvinder Singh Purewal, Kawaljit Singh Sandhu

E-BT 103A	Cell Biochemistry and Nucleic Acids (4 Cr)	60 Hrs
Credit I	 Water Structure of water, interactions viz. ionic, polar-non polar, colligative properties of aqueous solutions. Concept of pH Henderson Hasselbalch equation, Concept of pKa, Buffers, titration curves, blood buffers and their regulation Chemical Foundation Concept of covalent bond, ionic bond, and coordinate bond, hydrogen bond, Van der Waals interactions, hydrophobic interactions, electrostatic interactions and London forces bond length and bond energy, Thermodynamics Laws of thermodynamics and their application to living systems. Concept of free energy, enthalpy, entropy and their relation to chemical equilibrium. Energy rich compounds ATP, Creatine phosphate. Basics of evolution Evolution of biomolecules, Miller's experiment, RNA as primitive catalysts, Evolution of prokaryotes and eukaryotes, 	15 Hrs
Credit II	Cell Cycle, Cell Division and Cell Death Cell types - organization of prokaryotic and eukaryotic cells, Cell division - Mitosis and meiosis, Cell cycle - phases of cell cycle and regulation of cell growth and cell cycle, Cell aging and death - necrosis and apoptosis - mitochondrial and death receptor pathway	15 Hrs
Credit III	Genes and Chromosomes Chromosome structure, gene. Polytene and Lampbrush chromosome. Packing of DNA and supercoiled DNA, nucleosome, inverted repeats, satellite DNA, gene number, gene clusters and pseudogene. Nucleic Acids	15 Hrs

	Bases, sugars, nucleosides, nucleotides, oligonucleotides,	
	polynucleotides.	
	RNA: Ribosomal RNA (rRNA), messenger RNA (mRNA), small	
	nuclear RNA (snRNA), transfer RNA (tRNA) and HnRNA	
	DNA: Structure, base pairing, double helix, coding of genetic	
	information, sense and antisense strands	
	Molecular models of DNA: B-DNA, A-conformation, Z-confirmation	
	Nucleic Acid Metabolism	
	Biosynthesis and degradation of nucleotides: <i>de novo</i> pathways and the	
	salvage pathway.	
Credit IV	Degradation of nucleotides: difference in purine and pyrimidine	15 Una
Creatt IV	degradation, generation of inosine monophosphate (IMP), allantoin,	15 118
	allantoinic acid, glyoxylate, release of uric acid and thyamine as	
	intermediates, β -alanin, γ -aminoisobutyrate.	
	In born errors in nucleic acid metabolism	

- 1. Cells by David Prescott
- 2. Cell Structure and Function by Loewy and Gallant
- 3. Molecular Biology of the Cell by Albert Bruce et al, Garland Publication New York 1997
- 4. Lehninger's Principles of Biochemistry by D. L. Nelson and M. M. Cox, CBS Publications, 2000
- Biochemistry by Lubert Stryer, 4th Edition
 Biochemistry by David Rawn

E-BT 103B	Taxonomy and Molecular Systematics (4 Cr)	60 Hrs
Credit I	Introduction to microbial Systematics: Overview of microbial Systematics: Definition of microbial systematics and nomenclature, Steps in microbial Nomenclature and identification, Introduction of microbial Worlds history, hierarchical organization and the location of different taxa of microbes in Biological classification systems. Artificial and phylogenetic analysis – dendrogram. Haeckel's three-kingdom classification, Whittaker's five kingdom approach, three domain classification of Carl Woese.	15 Hrs
Credit II	microbial Taxonomy: Introduction and general idea of taxonomic ranks: concept and theory of Numerical Taxonomy, Chemotaxonomy. Characteristics applied in microbial taxonomy – morphological, physiological, metabolic, genetic, antigenic and molecular characteristics, comparison of proteins, nucleic acid hybridization, computer applications in taxonomy studies.	15 Hrs

Credit III	Bacterial classification: General characteristics of bacteria and archaea. Bacterial classification based on editions of Bergey's Manual of systematic Bacteriology: Bacterial identification based on Binomial Nomenclature and Numerical taxonomy. Bacterial characteristics used for nomenclature with some example – morphological, staining, physiological, biochemical and molecular (mol % G+C, nucleic acid hybridization, 16SrRNA sequencing) characters	15 Hrs
Credit IV	Other microorganisms systematics introduction: Systematics strategies used for other microbial classification: Fungal classification by Ainsworth, algal classification by Fritsch, ICTV classification of virus and Protozoal classification based on locomotion.	15 Hrs

- Methods in microbiology Volume 19th by R. R. Colwell and R. Grigrorova
 Prescott's microbiology by Joanne Willey, Kathleen Sandman and Dorothy Wood
 Brock Biology of microorganisms, 14th edition by michael T. Madigan Kelly S. Bender Daniel H. Buckley W Matthew Sattley and David A. Stahl

E-BT 103C	Advances in Drug and Clinical Research (4 Cr)	60 Hrs
Credit I	Drug and Drug Development 1. History Definition and Types 2. Drug Discovery & Development Process • Therapeutic concept selection • Drug Discovery • Pharmaceutical Development • Clinical Development	15 Hrs
Credit II	Introduction to Clinical Research1. History of Clinical Research2. Good Clinical Practices & ICH3. Stakeholders in Clinical Research4. Glossary	15 Hrs
Credit III	 Clinical Trial Methods Types of Clinical Trial Clinical Trial Design Randomized Controlled Trial Safety Management Identification and recruitment of participants for Clinical Trial Record keeping and Data Handling Essential Documents in Clinical Trial Pharmacovigilance 	15 Hrs
Credit IV	Regulations in Clinical Trials	15 Hrs

1. Evolution of Regulation
2. Regulatory Affairs
Code of Federal Regulations
European Medical Agencies
Medicines and Healthcare Products Regulatory Agency, UK
Therapeutic Goods and Administration Australia
Regulatory Agencies in India
3. Quality Assurance

- 1. Basics of Clinical Research by S. D. Shewale, S. N. Shinde, V. G. Wawale
- 2. Textbook of Clinical Trials. By David Machin.
- Textbook of Clinical Research by <u>Vikas Dhikav</u>
 Essentials of Clinical Research by Dr Ravindra B Ghooi Sachin C Itkar

RM-BT 106	RESEARCH METHODOLOGY (4 Cr)	60 Hrs
Credit I	Biostatistics Basic terms, measures of central tendency and dispersion Population, Sample, variable, parameter, Frequency distribution, Mean median, mode, quartiles and measures of dispersion: range, variance, standard deviation, coefficient of variation, Graphicalrepresentation of data Probability and Distributions: Definition of probability (frequency approach), independent events. Addition and multiplication rules, conditional probability, Examples Bernoulli, Binomial, Poisson and Normal distributions. Mean and variance of these distributions (without proof). Bivariate Data: Scatter plot, correlation coefficient (r), properties (without proof), Interpretation of r, linear regression. Fitting of lines of regression, regression coefficient, coefficient of determination.	15 Hrs
Credit II	Computer History and generations of computers; (I, II, III, IV and V), Hardware; CPU, input, output, storage devices, classifications of computers; analog computers, digital computers, mainframe computers, miniframe computers, microcomputers. Memory: Primary memory or main memory; magnetic core memory, RAM, ROM, PROM, EPROM, EEPROM, Secondary memory or auxillary memory. Modern computers: Workstations, parallel processing computers, super-computers and servers for analysis of biological data. Computer Number system, fundamentals of logical concepts Machine level languages, assembly level languages, high levellanguages.	15 Hrs

	Foundation of Research	
Credit III	Characteristics of scientific research, Formulation of Research Problem, Research Process, Literature Review, Sampling, Data collection, Data Analysis, Report writing and Research data presentations in conferences, Manuscript writing and publications in journals. Communication Skills Basic process of communication; Types – verbal, nonverbal, channels, barriers. Aggressiveness, Assertiveness and submissiveness. Active listening, Modern tools of communication, Essential element of business communication: letters, minutes of the meeting, CV preparation presentations Interview skills	15 Hrs
	Introduction to Bioinformatics	
Credit IV	Introduction to Bioinformatics, Internet and use of the same for communication, Internet and Related Programmes, HTML, HTTP, telnet, FTP, internet browsers, TCP/IP. NCBI, ENTREZ, Databases, Database search- Data mining, Data management and interpretation, literature database. BLAST, sequence alignment, protein modeling, protein structure analysis, docking, genomics and proteomics.	15 Hrs

- 1. Biostatistics: A foundation for Analysis in the Health Sciences 7/E Wayne W. Daniel, Wiley Series in Probability and Statistics.
- 2. Introductory Statistics. Fifth Edition. (2004) Prem S. Mann. John Wiley and Sons (ASIA) Pte Ltd.
- 3. Basic Statistics-Aprimer for Biomedical Sciences- (Olive Jean Dunn).
- 4. Biostatistics-An introductory text (Auram Gold Stein).
- 5. Statistics: An Introductory Analysis (Taro Yamane) Harper and Row Publisher 1964,67,73
- 6. Computer Fundamentals, 6th Edition, P. K. Sinha and Priti Sinha, BPB Publications, 2007.
- 7. Computational Biochemistry, By: C. Stan Tsai, A John Wiley & Sons, Inc., publication.

P-BT 104	Laboratory Course I (4 Cr) (60 Hrs) 100 Marks
1.	Estimation of protein concentration by Lowry method.
2.	Estimation of protein concentration by Spectrophotometric method.
3.	Estimation of protein concentration by Dye binding method.
4.	Estimation of reducing sugar concentration by DNSA method.
5.	Estimation of glucose concentration by Glucose oxidase- peroxidase method.

6.	Isolation and Characterization of Casein / Starch / Glycogen / Lecithin / Cholesterol.
7.	Fermentative production of Gluconic acid
8.	Bioassay & BT of Streptomycin
9.	Fermentative Production of Wine
10.	Detection of adulteration in food products
11.	Introduction to NCBI
12.	Introduction to protein and nucleic acid sequence databases

P-BT 105	Laboratory Course II (2 Cr)(30 Hrs) 50 Marks
	Lipid characterization using i. Saponification value
1.	ii. Acid value iii. Iodine number
2.	Separation and Characterization of amino acids /sugar using paper chromatography / Thin layer chromatography.
3.	Separation of proteins using gel filtration technique.
4.	Separation of proteins using ion exchange chromatography
5.	Detection of Aflatoxin in food and feed

- 1. Practical Biochemistry: An Introductory Course by Fiona Frais.
- Methods in Enzymology Vol. I by S.P.Colowick and N.O.Kaplan eds.
 Basic Biochemical Methods 2nd ed by R.R.Alexander and J.M. Griffith
 Biochemical Methods 2nd ed. by S. Sadasivam and A. M
- 5. anickam.
- 6. Hawk's Physiological Chemistry ed. by Bernard L Oser.
- 7. A Textbook of Practical Biochemistry by David Plummer.
- 8. Laboratory Manual in Biochemistry by S. Jayaraman.
- 9. Laboratory Manual by Cappuccino.

SEMESTER - II

BT 201	Enzymology (4 Cr)				
Credit I	EnzymesClassification - IUB system, rationale, overview and specificexamples. Characteristics of enzymes, enzyme substrate complex.Concept of active centre, binding sites, stereospecificity and EScomplex formation. Effect of temperature, pH and substrateconcentration on reaction rate. Activation energy. Concept of bindingenergy. Transition state theory.Enzyme CatalysisFactors affecting catalytic efficiency - proximity and orientation effects, distortion or strain, acid - base and nucleophilic catalysis. Methodsfor studying fast reactions. Chemical modification of enzymes.Isoenzymes and multiple forms of enzymes.				
Credit II	Enzyme Kinetics michaelis - Menten Equation - form and derivation, steady state enzyme kinetics. Significance of Vmax and Km. Bisubstrate reactions. Graphical procedures in enzymology - advantages and disadvantages of alternate plotting. Enzyme inhibition - types of inhibitors - competitive, non-competitive and uncompetitive, their mode of action and experimental determination. Enzyme activity, international units, specific activity, turnover number, and point kinetic assay				
Credit III	Structure Function Relations Lysozyme, ribonuclease, chymotrypsin, carboxypeptidase, phosphorylase, aspartate transcarbamylase, glutamine synthetase and phosphofructo kinase. Multi enzyme complexes - pyruvate dehydrogenase and fatty acid synthetase; Na ⁺ -K ⁺ ATPase.	15 Hrs			
Credit IV	 Allosteric Interactions Protein ligand binding including measurements, analysis of binding isotherms, co-operativity , Hill and Scatchard plots and kinetics of allosteric enzymes. Enzyme Regulation Product inhibition, feedback control, enzyme induction and repression and covalent modification. Allosteric regulation. Immobilized Enzymes Relative practical and economic advantage for industrial use, Various methods of immobilization - ionic bonding, adsorption, covalent bonding (based on R groups of amino acids) , microencapsulation and gel entrapment. Immobilized multienzyme systems Biosensors - glucose oxidase, cholesterol oxidase, urease and antibodies based biosensors. Applications of enzymes in food, pharmaceutical, cosmetics, alcoholic, beverages and clinical. 	15 Hrs			

- 1. Fundamentals of Enzymology Price and Stevens
- 2. Enzymes Dixon and Webb
- 3. Isoenzymes By D. W. Moss
- 4. Immobilized Biocatalysts W. Hartneir
- 5. Selected papers Allosteric Regulation M. Tokushige

BT 202	Molecular Biology (4 Cr)				
Credit I	Genome organization Organization of bacterial genome, Structure of eukaryotic chromosomes; role of nuclear matrix in chromosome organization and function, matrix binding proteins, heterochromatin and euchromatin, transposable elements, molecular components, DNA re-association kinetics (Cot curve analysis), repetitive and unique sequences, kinetics and sequence complexities, satellite DNA, DNA melting and buoyant density, packing and organization of chromatin, nucleosome phasing, DNase I hypersensitive regions, DNA methylation & Imprinting. Mutation Nonsense, missense and point mutations, intragenic and intergenic suppression, frameshift mutations, transitions, transversions, physical, chemical and biological mutagens.	15 Hrs			
Credit II	DNA Replication, Repair & Recombination Concepts of replication initiation, elongation and termination in prokaryotes and eukaryotes, enzymes and accessory proteins involved in DNA replication, Fidelity in replication, replication of single stranded circular DNA. Gene stability and DNA repair DNA repair enzymes, photoreactivation, nucleotide excision repair, mismatch correction, SOS repair. Recombination: homologous and non- homologous recombination, site specific recombination, Holliday structure, resolution, chi sequences in prokaryotes, gene targeting, gene disruption, FLP/FRT and Cre/Lox recombination RecA and other recombinases.	15 Hrs			
Credit III	Prokaryotic & Eukaryotic Transcription Prokaryotic Transcription & Regulation: Promoters, Regulatory elements, Transcription Credit, constitutive and inducible promoter, operators, Initiation, Attenuation, Termination, Rho-dependent and independent termination, Anti-termination, Transcriptional regulation, positive and negative regulation, operon concept, Regulation of transcription of lac, trp, ara, his, and gal operons, transcriptional control in lambda phage, Transcript processing, Processing of tRNA and rRNA Eucaryotic transcription and regulation: RNA polymerase structure and assembly, RNA polymerase I, II, III, Eukaryotic promoters and enhancers, General Transcription factors, TATA binding proteins (TBP) and TBP associated factors (TAF), Activators and repressors, transcription initiation, elongation and termination,	15 Hrs			

	activation and repression, Transcriptional and post-transcriptional gene silencing, expression and processing of heterogeneous nuclear RNA, tRNA, rRNA, 5'-Cap formation,3'-end processing and polyadenylation, Splicing, RNA editing, Nuclear export of mRNA, mRNA stability, catalytic RNA.	
Credit IV	Translation & Transport The translation machinery, ribosomes, composition and assembly, Universal genetic code, degeneracy of codons, termination codons, isoaccepting tRNA, wobble hypothesis. Mechanism of initiation, elongation and termination, Co- and post-translational modifications, genetic code in mitochondria. Protein synthesis, Transport of proteins and molecular chaperones, protein stability, protein turnover and degradation	15 Hrs

- 1. Stryer L (1995) Biochemistry, 4 th / 5 th edition, W. H. Freeman & company, New York.
- 2. Watson J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A. and Weiner, A. M. (1988) Molecular biology of the gene, 4 th edition, The Benjamin/Cummings publishing companies, inc, California.
- 3. Benjamin Lewin (1999) Genes VII, oxford University Press, Oxford.
- 4. Weaver R. F. (1999) Molecular biology, WCB McGraw-Hill companies, Inc, New York.
- 5. Brown T A (1995) Essential molecular biology, vol. I, A practical approach, IR press, Oxford.
- 6. Genes and Genomes Maxine Singer and Paul Berg

E-BT 203	Tools and Techniques in Biological Sciences (4 Cr)			
Credit I	Fundamentals (Life Science) General scheme for purification of bio-components. Methods for studying cells and organelles. Sub-cellular fractionation and marker enzymes. Methods for lysis of plant, animal and microbial cell. Ultrafiltration, freeze drying and fractional precipitation. Use of detergents in isolation of membrane proteins.			
Credit II	Chromatography Basic principles and applications of adsoption, ion-exchange, gel filtration, partition, affinity, HPLC and reverse phase chromatography, TLC, Paper chromatography. Chromatofocussing. Centrifugation Ultracentrifugation - velocity and buoyant density determination. Density gradient centrifugation molecular weight determination.			
Credit III	Electrophoresis Basic techniques, poly acrylamide/ starch/ agarose gel electrophoresis, use of SDS/urea, isoelectric focusing, capillary electrophoresis. Pulse Credit III field gel electrophoresis. Tracer Techniques Principles and applications of tracer techniques in biology. Measurement of alpha, beta and gamma radiations. Radiation			

	dosimetry, Radioactive isotopes and half life of isotopes, Autoradiography, Cerenkov radiation, Liquid Scintillation spectrometry.	
Credit IV	 Principles and Biological Applications of Biophysical Techniques X-ray diffraction, fluorescence, UV, visible, CD/ORD, NMR and Mass spectroscopy, atomic absorption spectroscopy. plasma emission spectroscopy scanning and transmission electron microscopy, Atomic force microscopy Plant Tissue Culture Media requirements, sterilization and role of growth regulators. Requirements of a plant tissue culture laboratory. Caulogenesis and rhizogenesis, micropropogation, Somatic cell hybridization, Haploid (anther) culture, Embryo culture, Protoplast fusion, Somatic embryogenesis Somaclonal variations, Cybrides and Allopheny. Cell suspension and callus culture. <i>Agrobacterium</i> mediated hairy root culture. Production of industrially important secondary plant metabolites like taxol, bioinsecticides, pigments, etc. Conditioning of tissue culture plants (weaning and hardening). Active principles in medicinal plants and phytochemistry of the metabolites of medicinal importance. 	15 Hrs

Г

- 1. Protein Purification by Robert Scopes, Springer Verlag Publication, 1982
- 2. Tools in Biochemistry David Cooper
- 3. Methods of Protein and Nucleic acid Research, Osterman Vol I III
- 4. Centrifugation D. Rickwood
- 5. Practical Biochemistry, V th edition, Keith, Wilson and Walker.
- 6. Wetter L.R and Canstabel eds. (1982) Plant Tissue Culture methods. Natl. Res. Council, Canada.
- 7. Marris. P., Scragg, A.H., Standford, A and Fowlew M.W eds. (1986) Secondary metabolism in plant tissue cultures. Cambridge UnivPress, Cambridge.
- 8. Komamine A., Misawa M and Dicosmo F eds. (1991) Plant cell culture in Japan. CMC Co. Ltd, Tokyo.

P-BT 204	Laboratory Course III (4 Cr)(60 Hrs) 100 Marks
1.	Determination of specific activity of enzyme.
2.	Effect of pH and temperature on enzyme activity.
3.	Determination of michaelis –Menten constant of Amyloglucosidase / Invertase

	enzyme.
4.	Effect of various inhibitors / activators on enzyme catalysis.
5.	Immobilization of yeast cells.
6.	Isolation and characterization of DNA /RNA / Plasmid from various sources.
7.	In-vitro amplification of DNA using PCR reaction.
8.	Separation of DNA / Proteins using electrophoresis technique.
9.	Techniques used in molecular biology – HPLC / HPTLC /ELISA /Flow- cytometry / Western blot / etc.
10.	Chemical and microbiological Analysis of Food
11.	Chemical and microbiological Analysis of Milk
12.	Production of Amylase

- 1. Practical Biochemistry: An Introductory Course by Fiona Frais.
- Methods in Enzymology Vol. I by S.P.Colowick and N.O.Kaplan eds.
 Basic Biochemical Methods 2nd ed by R.R.Alexander and J.M. Griffith
 Biochemical Methods 2nd ed. by S. Sadasivam and A. Manickam.

- 5. Hawk's Physiological Chemistry ed. by Bernard L Oser.
- 6. A Textbook of Practical Biochemistry by David Plummer.
- 7. Laboratory Manual in Biochemistry by S. Jayaraman.
- 8. Practical microbiology by Prescott.

P-BT 205	Laboratory Course IV (2 Cr) (30 Hrs) 50 Marks
1.	Using RasMol through graphics and command line.
2.	Pair-wise sequence alignment.
3.	Multiple sequence alignment.
4.	Introduction of BioEdit.
5.	Construction of three-dimensional model by using SPARTAN.
6.	Model Building and Energy minimization.

7.	Introduction to Chimera.
8.	Molecular Docking and Drug designing.

- 1. Developing Bioinformatics computer skills Cynthia Gibas and Per Jambeck
- 2. An introduction to Computational Biochemistry- C. Stan Tsai John Wiley and Sons, Inc., publications

OJT-BT 206	On Job Training (4 Cr)	(60 Hrs) 100 Marks
FP-BT 206	OR	
	Field Project (4 Cr)	

9. Scheme of Teaching:

- Each theory paper will have 4 lectures of 60 min. per week.
- The theory paper will have classroom teaching of 60 hours per paper per semester.
- The classroom teaching will be done by Blackboard Chalk, Power Point Presentation, various ICT Tools, Question Answer way, Debate, Seminars, Quiz etc.
- The practical teaching will be done initially by theoretical explanation of experiment, procedural explanation, allowing the student to perform the experiment individually, discussion of results, possible outcome of the result and documentation of observations in notebook and recording all the details in journal which will be examined at the of practical examination.

10. Examination Pattern:

Theory:

• University examination will be of 80 marks for 3 hours as per university time-table and internal examination will be of 20 marks for 30 min.by the respective teacher for each theory paper.

Practical:

• University examination will be conducted for practical after theory examination for 4 days including inspection day from 10:30 am to 05:30 pm. There will be no internal examination.

On Job Training:

• The student will submit his/her On Job Training report to the Teacher in Charge after completion of On Job Training. The department will conduct presentation cum viva for all the students. The internal evaluation committee/examiners will assess the On Job Training report and marks will be given.

Field Project:

• The student will submit his/her Field Project report to the Teacher in Charge completion of Field Project. The department will conduct presentation cum viva for all the students. The internal evaluation committee/examiners will assess the Field Project report and marks will be given.

Research Methodology:

• University examination will be of 80 marks and internal examination will be of 20 marks for Research Methodology theory paper.

11. Nature of Question Paper and Scheme of Marking:

a) University Theory Examination: Skeleton of theory question paper:

M.Sc. Part – I/Sem. – I Examination – 2023 (NEP - 2023)

Biotechnology (HM)

Title of the Subject

(Subject Code)

Day & Date:

Time:

Total Marks: 80

Instructions: 1) Question No. 1 is COMPULSORY.

- 2) All questions carry **EQUAL** marks.
- Solve any FOUR questions such that at least TWO questions must be from EACH section.
- Q. 1 Objective

16 one line answer type questions

SECTION-I

Q.2 Essay type question	(16 Marks)
Q.3 Essay type question	(16 Marks)
Q.4 Essay type question	(16 Marks)
SECTIO	DN-II
Q.5 Write notes on	(2 x 08 Marks)
2 sub questions	
Q.6 Write short notes on	(4 x 04 Marks)
4 sub-questions	
Q.7 Write short notes on	(4 x 04 Marks)
4 sub-questions	

(16 Marks)

The theory examination will be conducted by the department as per the university examination time-table. The appointment of Chairman, Paper setters, paper assessment, moderation, appointment of internal/external Sr. Supervisor, Junior supervisor, Clerk and Peon for examination and other theory examination work will carried out as per the university rules and regulations.

b) Internal Theory Examination:

The internal theory examination of 20 marks will be conducted by Teacher in-charge of the respective subject during the semester. The internal examination theory have 20 questions of 1 mark each. The internal theory paper will be solved on same question paper. Separate answer book will not be given. The examination time will be 30 mins. The internal theory marks will be submitted or uploaded in the university examination portal as per the instruction given by the examination section of the university.

c) University Practical Examination:

The university practical examination will be conducted in the department immediately after theory examination. The duration of practical examination will be 4 days including inspection day. The examination for both practical papers will be conducted simultaneously. The day, date, nature of question paper, marks distribution and internal/ external examiners will be decided by theory examination Chairman in consultation with practical paper in charge and laboratory staff. The separate sanction/approval will be required from examination section for practical examination time-table.

12. Equivalence of Courses:

Old Course			Equivalent Course							
Sem	Course	Title of the Old	Credit	Course	Title of the New	Credit				
No.	Code	Course	Crean	Code	Course	Crean				
		Cell								
т	CC 101 A	Biochemistry	4	E-BT 103A	Cell Biochemistry and	4				
1	CC IUIA	and Nucleic	4		Nucleic Acids	4				
		Acids								
		Cell Biology,			Advance in Drug and					
Ι	CC 101B	Microbiology	4	E-BT 103B	Clinical Passarch	4				
		and Virology			Chincal Research					
		Proteins:			Proteins: Structure and					
Ι	CC 102	Structure and	4	BT 101	Functions	4				
		Functions			Functions					
Ι	CC 103	Biomolecules	4	BT 102	Biomolecules	4				
		Basics of								
Ι	CC 104A	Physiology and	4	RM-BT106	-	4				
		Endocrinology								
		Biostatistics and								
Ι	CC 104B	Computer	4	RM-BT106	Research Methodology	4				
		Applications								
		Laboratory								
Ι	CCPR	Course	4	-	-	-				
	105									
Ι	AEC 106	-	-	-	-	-				
II	CC 201	Enzymology	4	BT 201	Enzymology	4				
П	CC 202	Molecular	4	BT 202	Molecular Biology	4				
	00202	Biology		21202						
II	CC 203	Bioenergetics	4	-	-	-				
		Tools and							Tools and Techniques	
II	CC 204	Techniques in	4	E-BT 203	in Biological Sciences	4				
		Biosciences								
II	CCPR	Laboratory	4	-	-	-				
	205	Course	•							
II	SEC 206	-	-	-	-	-				

M. Sc. Part I (Semester I and II)